

On Crypto-Backed Loans

Frontiers in Decentralized Finance - May 26th 2023, Zhaw School of Management and Law

Francis Liu Natalie Packham Ramona Merkl Wolfgang Karl Härdle

Humboldt-Universität zu Berlin Berlin School of Economics and Law BRC Blockchain Research Center blockchain-research-center.com

- Without intermediaries like banks
- □ Total value locked (on-chain platforms) as of 26th April 2023 (source):
 - ► <u>AAVE</u> \$5.39b
 - JustLend DAO \$3.86b
 - <u>Compound</u> \$1.95b
- Total Value Locked: Value of digital assets on a protocol

Market landscape

On-chain AAVE

						Borr	ower	
	Your sup	plies					Hide –	•
	Balance \$2	2,089.78	APY 1.63 %	© Collateral \$2,08	9.78 🛈			
	Asset 🗢	Ва	alance ≑	APY 🗢	Collateral 🛈			
	🔶 ЕТН	\$ 2	1.07 2,089.78	1.63 %		Withdraw	Swap	
Asset		Available	(i) \$	APY, variable 🛈 🖨	APY, stabl	e 🛈 ≑		
Ŧ	USDT	1,732.	.17	3.58 %	12.48	% Bor	row	Details
€	DAI	1,731.	55	3.59 %	12.49	% Bor	row	Details

50

iet Loan				
Crypto Collateral	All 0 BT	C	Loan Amoun	t
🤒 втс 🗸	1	=	S USD N	 ✓ 21715
90% 70%	6	50%		
90% 70%	6 Maximum	50%	uration	Price down limit
90% 709 Daily fee 2.15 USD	6 Maximum 364 DAY	50% n loan d	uration	Price down limit 22922.12 USD

Common features

Non-recourse loan

- Over-collateralisation
 - ► >5% haircut
 - Enforced throughout the loan period
 - Maintained by liquidation/margin call with penalty (~5%) to borrower
- Borrowing rate is driven by demand and supply > improve

Borrowers' motivations...?

Not easy to justify borrowers' motivation

- □ Loan terms seem harsh
 - over-collateralisation
 - liquidation and its penalty
 - interest rate payment
- □ Cryptos are *not* consumable/spendable
- Require management efforts

Borrowers' can

- Receive liquidity in *preferred* cryptos
- Avoid tax events and price slippage
- Hedge/speculate > Derive a borrowing rate from this angle

Outline

- 1. Motivation \checkmark
- 2. Literature review
- 3. Mechanisms
- 4. Borrower's payoff
- 5. Fair borrowing premium
- 6. Numerical results

Non-recourse loans

Stock loans > Financial engineering perspective

Xia & Zhou (2007, Mathematical Finance)

- □ Compute a "fair value" $f(S_0)$ as perpetual call option
- Denote $\tilde{S}_t = e^{-rt}S_t$ to tackle the exponentially growing barrier and strike
- □ Explain the difference between fair value and initial portfolio with service fee charged by lender, i.e. $f(S_0) = S K + c$

Other stock loans literatures:

- □ Siu, Yam & Zhou (2014) compare effects by margin requirement and right of calling loans
- □ Lu & Putri (2016) include margin and finite maturity features
- Wong & Wong (2014) include stochastic volatility
- □ Cai & Sun (2014) include jumps
- Dai & Xu (2011) suggest an optimal redeeming strategy
- □ Liang et al (2010) study the effect of upper barrier

Non-recourse loans

Repurchase agreement (Repo) > Explain "specialness"

- Duffie (1997, The Journal of Finance)
- □ Specialness: Repo rate being significantly below the risk free rate
- Attributes specialness to institutional factors
- Arbitrage pricing theories apply for special Reportate

Other literatures:

- □ Fisher (2002) studies the equilibrium Reportate
- Bottazzi et al. (2012) investigate the recursive use of securities as collateral,
 Rehypothecation
- Duffie & Krishnamurthy (2016) show how market frictions affects effectiveness of monetary policy
- Huh & Infante (2017) attribute specialness to collateral bid-ask spread
- Rahmouni-Rousseau & Vari (2020) suggest that specialness is associated to collateral scarcity

Borrowing rate

- Determined by the utilisation rate of a liquidity pool
- Utilisation rate: # of coins loaned out / total # of coins provided by lenders
- Mainstream: Klink algorithm (e.g. on AAVE, Compound):

- Continuously compounding
- Rate changes whenever there is a transaction
- Parameters are decided by the platform (baseline, optimal utilisation, slopes)

Borrowing rate

Idea

- Provides quick response to demand and supply
- High borrowing rate: attracts lenders and encourages borrowers to repay
- □ Low borrowing rate: attracts borrowers and encourages lenders to withdraw

Problems

- ☑ Not attached to fixed maturity ➤ Term structure is not available
- Solely determined by *liquidity-pool-specific* demand and supply > Difficult to model
- Reflects a combination of risks (platform-specific + market risk) > Difficult to hedge

Borrowing rate

Time series of USDC borrowing rate (annualised) in major platforms

The Dynamics of Interest Rate in Crypto-Backed P2P Lending

Liquidation

- Sells the collateral to liquidators at a discount (liquidation bonus) to repay the loan
- ☑ Ensures loans are always over-collateralised
- Triggered when borrowers' Loan-to-Value (LTV) reach a threshold LTV_H

 \Box LTV:

 $LTV_t = \frac{\text{total debt at time } t}{\text{total collateral at time } t}$

Mostly triggered by sudden collateral price drops

Liquidation

AAVE

- □ Selling 50% of the collateral at a discount (~5%) to repay part of the outstanding debt
- Active loan position remains after liquidation
- Successive(cascading) liquidations is possible (<u>example</u>)

YouHodler

- Close borrower's position
- □ Sell *all* collateral to market to repay all the outstanding debt
- Return the remaining fund to borrower

The synthetic contract

A basic loan contract for analysis:

- □ The contract allows borrower to borrow <u>USD</u> against <u>BTC</u> collateral
- □ The initial collateral is LTV_0 USD worth BTC per USD borrowed
- \square The loan will be matured at time <u>T</u> > Attach a maturity
- □ Borrower can repay at $t \in [\Delta t, T] > \Delta t > 0$ earliest unwinding time
- □ Borrowing rate is an annualised continuously compounding rate, risk-free

rate <u>r</u> plus a premium <u>k</u>

The synthetic contract

Liquidation setting > YouHodler's liquidation

- Borrower has *no assess* to the collateral unless she repays all the outstanding debt.
- □ All the collateral will be liquidated if the position LTV is higher than LTV_H ; Or the borrower does not ever repay until time T.
- Liquidation turns *all* the BTC collateral into USD at market price of the time. After repaying the debt and the accrued interest, the remaining USD will be returned to the borrower.

Borrower's strategy and payoff

Market

 \square At time 0, the price of BTC is S_0 USD

Strategy

- □ Pledge S_0 USD worth crypto as collateral > 1 BTC collateral
- Borrow $S_0 \cdot LTV_0$ USD
- Repay the principal plus the accrued interests and sell the collateral to the market whenever it is profitable

If the position is unwinded at time t, the payoff in USD:

$$\begin{split} \phi_{\kappa}\left(S_{t},t\right) &= \left(S_{t\wedge\tau} - \mathsf{LTV}_{0}S_{0}e^{(r+\kappa)t\wedge\tau}\right)^{+} \\ &= \left(S_{t\wedge\tau} - Ke^{(r+\kappa)t\wedge\tau}\right)^{+}, \end{split}$$

where $t \wedge \tau = \min(t, \tau)$, $\tau = \inf \{t : LTV_t \ge LTV_H\}$ with $\inf \{\emptyset\} = \infty$.

> Barrier call option with exponentially growing strike and barrier (on next slide)

Liquidation threshold

Express the liquidation criteria in price of collateral

Recall

$$\tau = \inf \{t : LTV_t \ge LTV_H\}$$

☑ Rewrite and rearrange

$$\begin{aligned} \tau &= \inf \left\{ t : \frac{\mathsf{LTV}_0 S_0 e^{(r+\kappa)t}}{S_t} \ge \mathsf{LTV}_H \right\} \\ &= \inf \left\{ t : S_t \le \frac{\mathsf{LTV}_0}{\mathsf{LTV}_H} S_0 e^{(r+\kappa)t} \right\} \qquad K = \mathsf{LTV}_0 S_0 \\ &= \inf \left\{ t : S_t \le H e^{(r+\kappa)t} \right\} \qquad H = \frac{\mathsf{LTV}_0}{\mathsf{LTV}_H} S_0 \end{aligned}$$

> Barrier is always larger than strike (due to over-collateralisation $LTV_H < 1$)

No-arbitrage price

Suppose the uncertainty of the crypto collateral price is described by a filtered riskneutral probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{Q})$, the no-arbitrage price of the loan position is:

$$g(\kappa, \Delta t, T) = \sup_{\Delta t \le t \le T} \mathsf{E}_{\mathbb{Q}} \left[e^{-rt} \phi_{\kappa} \left(S_{t}, t \right) \right].$$

- \square American type: The supremum is taken over all stopping times between Δt and T
- Equivalent to long a American barrier option written on the collateral
- □ Cost of entering the position is the *haircut* of the loan:

$$S_0 - \mathrm{LTV}_0 S_0$$

□ *Net cash flow* at contract inception:

$$-S_0 + \mathrm{LTV}_0 S_0 + g(\kappa, \Delta t, T)$$

Characteristics

Lemma 1. If $\kappa_1 > \kappa_2$, then $g(\kappa_1, \Delta t, T) < g(\kappa_2, \Delta t, T)$ for any $0 \le \Delta t < T$ and T > 0.

> Lower the premium, higher the value of the borrowing position

Lemma 2. If $T_1 > T_2$, then $g(\kappa, \Delta t, T_1) \ge g(\kappa, \Delta t, T_2)$ for any $0 \le \Delta t < T_2$ and $\kappa \in \mathbb{R}$.

Longer the maturity, higher the value of the borrowing position

Lemma 3.
$$g(\kappa, \Delta t, T) \ge \mathsf{E}\left[\left(S_{\Delta t \wedge \tau} - \mathsf{LTV}_0 S_0\right)^+ \middle| \mathscr{F}_0\right].$$

Corollary 1. $g(\kappa, 0, T) \ge S_0 - LTV_0S_0$.

> If borrower can repay right at contract inception, the smallest position value is the haircut

- Borrower pays zero interest to lender (not an interesting case)
- > Set $\Delta t > 0$ for further analysis

Proofs

Fair premium

- To avoid arbitrage (see Xia & Zhou (2007)), the fair borrowing premium $\hat{\kappa}$ is the premium that brings the net cash flow at contract inception to 0: $-S_0 + LTV_0S_0 + g(\hat{\kappa}(T), \Delta t, T) = 0$
- The term structure $\{\hat{\kappa}(t)\}_{t \ge \Delta t}$ is always contango as a result of lemma 1 and lemma 2

 \square $\hat{\kappa}(T)$ s depend on the choice of risk neutral measure \mathbb{Q}

Theorem 1. If the discounted collateral price process is *continuous* under a risk-neutral measure, then the fair (arbitrage-free) borrowing premium of the synthetic contract is *zero*.

➤ The positive borrowing premium observed from the market can be seen as a compensation to the *discontinuity* of the collateral price process or some other issues.

Proof of Theorem 1:

Since
$$K < H$$
 and $\{S_t\}_{0 \le t \le T}$ is continuous (recall $\tau = \inf\{S_t : S_t \le He^{(r+\kappa)t}\}$),
 $(S_{\tau \wedge T} - e^{(r+\kappa)(\tau \wedge T)}K)^+ = S_{\tau \wedge T} - e^{(r+\kappa)(\tau \wedge T)}K.$

By optional stopping theorem, the follow holds for any stopping time $\tau \wedge T$

$$\mathsf{E}\left[e^{-r(\tau\wedge T)}\left(S_{\tau\wedge T}-e^{(r+\kappa)(\tau\wedge T)}K\right)\right]=S_0-K\cdot\mathsf{E}\left(e^{\kappa(\tau\wedge T)}\right).$$

Therefore,

$$g(\kappa, \Delta t, T) = \sup_{\Delta t \le t \le T} \mathsf{E} \left[e^{-r(\tau \wedge t)} \left(S_{\tau \wedge t} - e^{(r+\kappa)(\tau \wedge t)} K \right) \right]$$
$$= S_0 - K \sup_{\Delta t \le t \le T} \left[\mathsf{E} \left(e^{\kappa(\tau \wedge t)} \right) \right].$$

As the consequence, for $-S_0 + K + g(\hat{\kappa}, \Delta t, T) = 0$ (no-arbitrage/zero net cashflow at inception) to hold, $\hat{\kappa}$ must be zero.

Numerical procedure

 \square To find $\hat{\kappa}$:

- 1. Obtain a set of $g(\kappa, \Delta t, T)$ s from a pricer for an array of κ_i s (Longstaff and Schwartz)
- 2. Get an approximation $\tilde{g}(\kappa), \forall \kappa \in \mathbb{R}$ by polynomial interpolation
- 3. Set $\hat{\kappa} = \tilde{g}^{(-1)}(S K)$
- Further inspect the relationship between \hat{k} and T by repeat the procedure with different maturities T
- □ Form a fair premium curve (analogous to yield curves)

Collateral price process

Double Exponential Jump Process (Kou, 2002)

- □ Allow asymmetric jump sizes
- □ Able to fit crypto IV surface nicely
- Popular choice of discontinuous price process

$$\frac{dS_t}{S_{t-}} = (r - \lambda\zeta) dt + \sigma dW_t + d\left\{\sum_{i=1}^{N_t} (V_i - 1)\right\}, \zeta = E(V),$$

$$Y = \log(V), f_Y(y) = p\eta_1 e^{-\eta_1 y} \cdot 1(y \ge 0) + (1 - p)\eta_2 e^{-\eta_2 y} \cdot 1(y < 0)$$
robability of a positive jump for a positive jump size Parameter for negative jump size

P

Deribit ETH IV on 20210401

27

Results from pricing algo

European net cash flow (EU); American net cash flow (AM)

- ☑ AM > EU; Downward slopping prices;
- ☑ When the borrowing rate is higher (left to right on each panel)
 - Gap between the AM and EU widens
- When maturity increases (panels from left to right, top to bottom)
 - Spread between the two prices increases (see also next slide)
 - Ams shift upward on the left; Slope decreases (see also next slide)
 - EUs' slope decreases

On Crypto-Backed Lending

IV implied fair p remium curves

Results from pricing algo

European net cash flow (EU); American net cash flow (AM)

- ☑ AM > EU; Downward slopping prices;
- ☑ When the borrowing rate is higher (left to right on each panel)
 - Gap between the AM and EU widens
- When maturity increases (panels from left to right, top to bottom)
 - Spread between the two prices increases (see also next slide)
 - Ams shift upward on the left; Slope decreases (see also next slide)
 - EUs' slope decreases

Term structure

Fair YouHolder premium (annualised continuously compounded rate) calibrated to Deribit ETH IV surface on 20210421 and their Monte Carlo 95% confidence interval

EU fair premium, AM fair premium, Early stopping premium

• **EU**

AM

- Large CI covering negative values when T is small,
- Hump at T = 1 days; decreasing afterwards
- Rough but converging; converge to 5.3%

- AIVI
 - Non-decreasing function of maturity
 - consistent CI that does not cover negative values after T = 10
 - Level off after T = 10 days and converge to **20.4%**

Early stopping premium

- AM-EU
- Roughly a non-decreasing function of maturity
- 0 when maturity is short, increasing trend

References

- 1 Arrata, W., Nguyen, B., Rahmouni-Rousseau, I., & Vari, M. (2020). The scarcity effect of QE on repo rates: Evidence from the euro area. Journal of Financial Economics, 137(3), 837-856.
- 2 Bottazzi, J. M., Luque, J., & Páscoa, M. R. (2012). Securities market theory: Possession, repo and rehypothecation. Journal of Economic Theory, 147(2), 477-500.
- 3 Cai, N., & Sun, L. (2014). Valuation of stock loans with jump risk. Journal of Economic Dynamics and Control, 40, 213-241.
- 4 Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of computational finance, 2(4), 61-73.
- 5 Carr, P., Ellis, K., & Gupta, V. (1999). Static hedging of exotic options. In Quantitative Analysis In Financial Markets: Collected Papers of the New York University Mathematical Finance Seminar (pp. 152-176).
- 6 Dai, M., & Xu, Z. Q. (2011). Optimal redeeming strategy of stock loans with finite maturity. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 21(4), 775-793.
- 7 Duffie, D., & Krishnamurthy, A. (2016, August). Passthrough efficiency in the fed's new monetary policy setting. In Designing Resilient Monetary Policy Frameworks for the Future. Federal Reserve Bank of Kansas City, Jackson Hole Symposium (pp. 1815-1847).
- 8 Fisher, M. (2002). Special reportates: An introduction. Economic Review-Federal Reserve Bank of Atlanta, 87(2), 27-44.
- 9 Glasserman, P. (2004). Monte Carlo methods in financial engineering (Vol. 53, pp. xiv+-596). New York: springer.
- 10 Huh, Y., & Infante, S. (2021). Bond market intermediation and the role of repo. Journal of Banking & Finance, 122, 105999.
- 11 Kou, S. G. (2002). A jump-diffusion model for option pricing. Management science, 48(8), 1086-1101.
- 12 Kou, S. G., & Wang, H. (2003). First passage times of a jump diffusion process. Advances in applied probability, 35(2), 504-531.
- 13 Kou, S. G., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management science, 50(9), 1178-1192.
- 14 Liang, Z., Wu, W., & Jiang, S. (2010). Stock loan with automatic termination clause, cap and margin. Computers & Mathematics with Applications, 60(12), 3160-3176.
- Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach. The review of financial studies, 14(1), 113-147.
- 16 Lu, X., & Putri, E. R. (2016). Finite maturity margin call stock loans. Operations Research Letters, 44(1), 12-18.
- 17 Tsitsiklis, J. N., & Van Roy, B. (2001). Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks, 12(4), 694-703.
- 18 Wong, T. W., & Wong, H. Y. (2012). Stochastic volatility asymptotics of stock loans: Valuation and optimal stopping. Journal of Mathematical Analysis and Applications, 394(1), 337-346.
- 19 Xia, J., & Zhou, X. Y. (2007). Stock loans. Mathematical Finance, 17(2), 307-317.

On Crypto-Backed Loans

Frontiers in Decentralized Finance - May 26th 2023, Zhaw School of Management and Law

Francis Liu Natalie Packham Ramona Merkl Wolfgang Karl Härdle

Humboldt-Universität zu Berlin Berlin School of Economics and Law BRC Blockchain Research Center blockchain-research-center.com

Regression-based pricing algorithm

Longstaff and Schwartz (2001) method:

1. Simulate *b* independent paths $\{S_{1j}, \ldots, S_{mj}\}$, $j = 1, \ldots, b$

2. At terminal nodes, set $\hat{V}_{mj} = \phi_{\kappa} \left(S_{mj} \right)$

- 3. Apply backward induction: for i = m 1,...,1,
 - i) Fit regression $\hat{V}_{i+1,j} = \hat{C}_i(S_i) + \varepsilon$ ii) Set $\hat{V}_{ij} = \begin{cases} \phi_{\kappa}(S_{ij}) & \text{, if } \phi_{\kappa}(S_{ij}) \ge \hat{C}(S_{ij}) \\ \hat{V}_{i+1,j} & \text{, else.} \end{cases}$, for $j = 1, \dots, b$

3. Set $\hat{V}_0 = \left(\hat{V}_{11} + \dots, \hat{V}_{1b}\right) / b$

See also Glasserman (2004), and Tsitsiklis and Van Roy (2001).

Proofs

Proof of Lemma 1.

Let
$$\tau_1 = \inf\left\{t: S_t \leq \frac{\mathsf{LTV}_0}{\mathsf{LTV}_H}S_0e^{(r+\kappa_1)t}\right\}$$
 and $\tau_2 = \inf\left\{t: S_t \leq \frac{\mathsf{LTV}_0}{\mathsf{LTV}_H}S_0e^{(r+\kappa_2)t}\right\}$ be the liquidation times.

Since $\tau_1 \leq \tau_2$, i.e. collateral price must pass through a higher barrier from above before passing through a lower barrier from above,

$$\left\{\mathsf{E}\left[\left(S_{t\wedge\tau_{1}}-\mathsf{LTV}_{0}S_{0}e^{(r+\kappa_{1})(t\wedge\tau_{1})}\right)^{+}\right]\right\}_{\Delta t\leq t\leq T}\subseteq\left\{\mathsf{E}\left[\left(S_{t\wedge\tau_{2}}-\mathsf{LTV}_{0}S_{0}e^{(r+\kappa_{1})(t\wedge\tau_{2})}\right)^{+}\right]\right\}_{\Delta t\leq t\leq T}$$

Therefore,

$$\sup_{\Delta t \le t \le T} \mathsf{E}\left[\left(S_{t \wedge \tau_1} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau_1)}\right)^+\right] \le \sup_{\Delta t \le t \le T} \mathsf{E}\left[\left(S_{t \wedge \tau_2} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau_2)}\right)^+\right].$$

Since $\kappa_1 > \kappa_2$ $\sup_{\Delta t \le t \le T} \mathsf{E} \left[\left(S_{t \land \tau_2} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \land \tau_2)} \right)^+ \right] < \sup_{\Delta t \le t \le T} \mathsf{E} \left[\left(S_{t \land \tau_2} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_2)(t \land \tau_2)} \right)^+ \right].$

Proofs

Proof of Lemma 2.

Since
$$T_1 > T_2$$
,

$$\left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_1} \supseteq \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right)^+ \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right\}_{\Delta t \le T_2} = \left\{ \mathsf{E} \left[\mathsf{E} \left[\mathsf{E} \left[S_{t \wedge \tau} - \mathsf{ETV}_0 S_0 e^{(r+\kappa_1)(t \wedge \tau)} \right] \right\}_$$

Therefore,

$$\sup_{\Delta t \leq t \leq T_1} \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa)(t \wedge \tau)} \right)^+ \right] \geq \sup_{\Delta t \leq t \leq T_2} \mathsf{E} \left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa)(t \wedge \tau)} \right)^+ \right].$$

Proofs

Proof of Lemma 3.

Since $\{t = \Delta t\} \in \mathcal{F}_0$ is a stopping time,

$$\mathsf{E}\left[\left(S_{\Delta t \wedge \tau} - \mathsf{LTV}_0 S_0\right)^+\right] \in \left\{\mathsf{E}\left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa)(t \wedge \tau)}\right)^+\right]\right\}_{\Delta t \leq t \leq T}.$$

Therefore,

$$\sup_{\Delta t \leq t \leq T} \mathsf{E}\left[\left(S_{t \wedge \tau} - \mathsf{LTV}_0 S_0 e^{(r+\kappa)(t \wedge \tau)}\right)^+\right] \geq \mathsf{E}\left[\left(S_{\Delta t \wedge \tau} - \mathsf{LTV}_0 S_0\right)^+\right].$$

Example 1: Back borrow by multiple collateral types

WETH Collateral

+	timestamp	value	event	+
0 1 2 3 4	2022-03-10 18:10:49 2022-05-27 05:48:03 2022-06-13 07:57:50 2022-06-15 04:28:08 2022-06-18 09:46:59	2.4 2.85075 1.47886 0.692964 0.23185	enableAsCollateral depositAsCollateral liquidationCall liquidationCall liquidationCall	Cascading liquidation calls

ENJ Collateral

+	timestamp	value	event
0	2022-03-10 18:50:22	900	enableAsCollateral

DAI Borrow

-		timestamp	value	+ event	+
	0 1 2 3	2022-03-10 18:56:35 2022-06-13 07:57:50 2022-06-15 04:28:08 2022-06-18 09:46:59	3299 1616.94 767.005 333.453	borrow liquidationCall liquidationCall liquidationCall	

User id: 0x07f23457d4282e3119244a62448483357ee25cf5

Liquidators choose which collateral to liquidate. In this case, they chose WETH.

WETH Borrow

ļ		timestamp	value	event		
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2021-01-16 05:53:00 2021-01-16 06:47:25 2021-01-16 06:54:38 2021-01-20 04:06:32 2021-01-20 21:01:49 2021-01-20 22:44:33 2021-01-22 05:46:58 2021-01-31 07:41:27 2021-01-31 16:27:21 2021-02-02 06:31:22 2021-02-03 05:34:09 2021-02-04 06:05:44 2021-02-05 02:18:56 2021-02-11 05:49:02 2021-02-11 05:55:34 2021-02-19 01:40:00 2021-02-24 01:10:05 2021-03-07 15:20:58 2021-03-07 15:20:58 2021-03-07 04:28:33 2021-04-07 06:06:16 2021-04-18 20:41:40 2021-04-19 03:27:43 2021-04-22 05:15:26	124.45 494.45 554.45 0 124.823 53.8234 0 943.82 713.82 863.82 1199.82 1529.82 2095.82 0 198.51 598.51 0 223.174 203.174 147.174 0 43.807 223.807 0	borrow borrow borrow repay borrow repay borrow borrow borrow borrow repay borrow repay borrow repay borrow repay borrow repay borrow repay borrow repay	 v v v v v v v v v v v v v	
+ []	DAI Bo	 orrow	+	+	 L	ł
		timestamp		value	e e	vent
	0 1 2 3 4 5 6 7	2021-01-20 04:56:50 2021-01-21 12:47:17 2021-01-24 21:44:18 2021-02-04 05:50:34 2021-02-24 05:07:49 2021-04-22 05:12:36 2021-05-14 20:49:40 2021-06-04 06:35:09	2.358 1.916 3.216 3.816 379642 0 1.215 2.215	29e+06 29e+06 29e+06 29e+06 29e+06 05e+06		orrow epay orrow orrow epay epay orrow orrow

LINK Borrow

	L	L	LJ
	timestamp	value	event
0 1 2	2021-03-07 06:20:43 2021-03-07 15:24:28 2021-03-07 20:52:45	200000 290000 330000	borrow borrow borrow
3	2021-03-08 22:20:26	0	repay
4	2021-03-08 22:29:54	j 0	repay

USDC Borrow

שר ב	borrow		
	timestamp	value	event
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2021-01-16 05:56:01 2021-01-16 06:06:27 2021-01-16 06:24:23 2021-01-16 06:35:16 2021-01-23 04:01:24 2021-01-30 15:14:31 2021-01-31 07:32:45 2021-01-31 16:27:21 2021-02-14 06:46:15 2021-02-23 09:43:47 2021-02-24 05:19:23 2021-04-18 20:54:23 2021-04-19 03:23:34 2021-04-23 04:01:40 2021-05-01 21:38:53 2021-05-06 04:50:27 2021-05-12 05:33:49 2021-06-04 19:52:37 2021-06-04 20:51:29 2021-06-13 21:07:58 2021-06-13 21:40:46	$\begin{array}{c} 1e+06\\ 1.69576e+06\\ 995639\\ 0\\ 359976\\ 659976\\ 2.15998e+06\\ 1.8549e+06\\ 2.0566e+06\\ 1.0998e+06\\ 0\\ 585514\\ 0\\ 1.68548e+06\\ 3.18548e+06\\ 3.18548e+06\\ 3.78548e+06\\ 2.44478e+06\\ 1.76287e+06\\ 1.76287e+06\\ 1.6914e+06\\ 1.6914e+06\\ 1.8792e+06\\ 0\\ 0\end{array}$	borrow repay repay borrow borrow borrow repay borrow repay borrow repay borrow borrow borrow repay borrow repay borrow repay borrow repay porrow repay porrow repay repay repay repay repay
	+		+

TUSD Borrow

+	timestamp	value	event
0	2021-02-02 06:14:43	250000	borrow
1	2021-02-24 05:11:19	94555.4	repay
2	2021-04-22 05:06:54	0	repay

SUSD Borrow

_				
		timestamp	value	event
	0 1 2	2021-05-14 20:53:13 2021-05-14 21:14:25 2021-06-18 05:24:54	1.25e+06 174940 0	borrow repay repay

USDT Borrow

±	L	L	L
1	timestamp	value	event
 0 1 2 3 4 5 6 7 8	2021-02-03 05:30:16 2021-02-05 02:18:56 2021-03-14 04:49:04 2021-03-14 04:59:36 2021-03-14 05:07:39 2021-04-17 06:12:41 2021-04-23 04:38:16 2021-04-23 04:58:05 2021-05-06 04:55:32	Vatue 600000 0 89465.5 179465 89465.5 0 5.29823e+06 5.99823e+06 7.99823e+06	borrow borrow borrow repay repay borrow borrow borrow
9 10 11 12 13 14 15 16 17 18 19 20 21	2021-05-14 21:03:04 2021-05-16 20:54:46 2021-05-19 04:59:32 2021-05-19 13:20:23 2021-06-02 06:00:31 2021-06-04 06:23:40 2021-06-04 19:46:02 2021-06-04 21:51:44 2021-06-12 22:12:17 2021-06-13 21:13:06 2021-06-13 21:39:51 2021-06-14 19:22:53 2021-06-18 05:24:54	9.19823e+06 7.78312e+06 5.97676e+06 4.94508e+06 4.95508e+06 5.95508e+06 5.19971e+06 7.37193e+06 7.35682e+06 3.82736e+06 8.05526e+06 7.43654e+06 0	borrow repay repay borrow borrow repay borrow repay borrow repay repay

0x057518153ed7f25dd237a0d0052ae8cc5c428ee3

1.23573e+06

repay

borrow

repay

repay

963574

963871

0

2021-06-04 19:38:33

2021-06-04 19:55:05

2021-06-04 20:51:23

2021-06-18 05:24:54

8

9

10

11

WBTC Collateral

	timestamp	value	event
0	2021-01-16 05:50:19	62.5	enableAsCollateral
1	2021-01-16 06:04:28	117.5	depositAsCollateral
2	2021-01-16 06:27:36	57.5	redeemUnderlying
3	2021-01-16 06:42:56	27.5	redeemUnderlying
4	2021-01-16 06:53:31	36.2382	depositAsCollateral
5	2021-01-20 04:55:38	160.199	depositAsCollateral
6	2021-01-20 05:52:06	118.199	redeemUnderlying
7	2021-01-24 21:40:19	190.373	depositAsCollateral
8	2021-01-31 07:30:41	311.525	depositAsCollateral
9	2021-02-02 01:38:42	361.423	depositAsCollateral
10	2021-02-03 06:13:52	400.674	depositAsCollateral
11	2021-02-11 05:43:06	325.674	redeemUnderlying
12	2021-02-11 05:52:39	260.674	redeemUnderlying
13	2021-02-11 05:57:42	224.978	redeemUnderlying
14	2021-02-19 01:23:49	214.978	redeemUnderlying
15	2021-02-24 05:27:49	47.978	redeemUnderlying
16	2021-03-07 06:17:01	192.678	depositAsCollateral
17	2021-03-08 22:23:23	120.678	redeemUnderlying
18	2021-03-08 22:41:34	27.978	redeemUnderlying
19	2021-04-18 20:53:43	39.978	depositAsCollateral
20	2021-04-19 03:30:37	28.978	redeemUnderlying
21	2021-04-22 05:17:20	0	disableAsCollateral
22	2021-04-23 03:51:44	0	enableAsCollateral
23	2021-04-23 03:51:44	244.969	depositAsCollateral
24	2021-04-23 03:58:55	313.713	depositAsCollateral
25	2021-04-23 04:47:20	341.767	depositAsCollateral
26	2021-05-01 21:37:47	326.767	redeemUnderlying
27	2021-05-17 05:33:11	268.767	redeemUnderlying
28	2021-05-22 17:57:34	228.767	redeemUnderlying
29	2021-05-23 17:09:13	300.451	depositAsCollateral
30	2021-05-23 18:13:38	390.422	depositAsCollateral
31	2021-05-26 23:01:29	290.422	redeemUnderlying
32	2021-06-04 06:23:09	294.069	depositAsCollateral
33	2021-06-04 06:45:09	321.405	depositAsCollateral
34	2021-06-04 21:45:33	394.426	depositAsCollateral
35	2021-06-13 21:07:58	334.426	redeemUnderlying
36	2021-06-13 21:13:05	335.216	depositAsCollateral
37	2021-06-18 05:24:54	0	disableAsCollateral

+	++	+	++	
	timestamp	value	event	
0	2021-01-21 12:50:29	480	depositAsCollateral	
1	2021-01-22 05:41:52	0	disableAsCollateral	
2	2021-01-23 04:09:11	480	enableAsCollateral	
j 3	2021-01-23 04:09:11	640	depositAsCollateral	
4	2021-01-27 03:50:26	676	depositAsCollateral	
5	2021-01-30 15:28:44	0	disableAsCollateral	
6	2021-03-07 06:17:44	2576	enableAsCollateral	
j 7	2021-03-07 20:49:14	3696	depositAsCollateral	
8	2021-03-08 22:24:29	0	disableAsCollateral	
j 9	2021-05-06 04:59:15	3696	enableAsCollateral	
10	2021-05-06 04:59:15	3976	depositAsCollateral	
11	2021-05-11 20:53:22	4976	depositAsCollateral	
12	2021-05-14 20:49:40	5641	depositAsCollateral	
13	2021-05-16 20:56:30	6061	depositAsCollateral	
14	2021-05-17 05:32:03	6823	depositAsCollateral	
15	2021-05-19 05:00:06	7448	depositAsCollateral	
16	2021-05-19 13:22:17	7958	depositAsCollateral	
17	2021-05-26 23:08:04	8390	depositAsCollateral	
18	2021-05-27 00:27:49	8535.7	depositAsCollateral	
19	2021-06-04 21:52:20	8735.7	depositAsCollateral	
20	2021-06-12 22:12:27	8760.7	depositAsCollateral	
21	2021-06-13 21:17:37	9020.7	depositAsCollateral	
22	2021-06-18 05:24:54	0	disableAsCollateral	
+++++++				

USDC Collateral

	timestamp	value	event
0	2021-03-07 15:23:00	2.82893e+06	depositAsCollateral
1	2021-03-08 22:24:02	0	disableAsCollateral

0x057518153ed7f25dd237a0d0052ae8cc5c428ee3

د و ک ا

From 10-04-2021 to 19-6-2021 Collateral: WBTC, WETH Borrow: USDT, DAI, USDC \implies short USD

<u>Remarks</u>

- 1. USDT, DAI, and USDC are stable coins pegged to USD
- 2. WBTC and WETH are wrapped version of BTC and ETH, one can think of them as BTC and ETH because they are 1:1 backed by BTC and ETH.

Assumptions

- Continuous price process, zero transaction cost (to be relaxed)
- Constant borrowing rate over time
- Borrower only act at the end of the timespan; Liquidator always liquidate half of the collateral

Borrowers

- \Box At t = 0, Initiate multiple contracts: with 1 USD as initial investment, chain up contracts for F times
- At Mark-to-market τ^- : system checks: $LTV_t \ge LTV_H$
- Right after Mark-to-market τ^+ : Borrower makes a decision whether to unfold the contracts (repay all debt and regain possession of collateral)

At t = 0:

The total collateral is

$$C_0 = 1 + LTV_0 + LTV_0^2 + LTV_0^3 + \dots + LTV_0^{F-1}$$
$$= \frac{1 - LTV_0^F}{1 - LTV_0}$$

The total number of coins in contracts is

$$N_0 = \frac{C_0}{S_0}$$

The total outstanding debt at is

$$O_0 = \mathsf{LTV}_0 + \mathsf{LTV}_0^2 + \mathsf{LTV}_0^3 + \ldots + \mathsf{LTV}_0^F$$
$$= \mathsf{LTV}_0 \left(\frac{1 - \mathsf{LTV}_0^F}{1 - \mathsf{LTV}_0}\right)$$

So the total Loan-to-Value Ratio is

$$\frac{O_0}{C_0} = \text{LTV}_0$$

Cash Remaining: LTV_0^F

Observations:

Number of contracts does not affect the overall LTV;

Cost of entering this position is $1 - LTV_0^F$

At $t = \tau^-$ (before mark-to-market):

The total outstanding debt at is

 $O_{\tau^{-}} = O_0 \cdot e^{(r+\kappa)\tau^{-}} \longleftarrow \begin{array}{c} r: \text{ risk-free rate} \\ \kappa: \text{ premium to be determined} \end{array}$

The total collateral is

 $C_{\tau^-} = N_0 \cdot S_{\tau^-}$

The Loan-to-Value Ratio is

$$\mathsf{LTV}_{\tau^{-}} = \frac{O_{\tau^{-}}}{C_{\tau^{-}}} = \frac{\mathsf{LTV}_{0} \cdot e^{(r+\kappa)\tau^{-}} \cdot S_{0}}{S_{\tau^{-}}}$$

<u>Observation</u>: LTV is a function of price and time

At $t = \tau^+$ (after mark-to-market): The total outstanding debt at is $O_{\tau^+} = O_{\tau^-} - 1(\text{LTV}_{\tau^-} > \text{LTV}_H) \cdot N_1^l \cdot S_{\tau^-} \cdot \text{LB}$ The total collateral is $C_{\tau^+} = \{N_0 - 1(\text{LTV}_{\tau^-} > \text{LTV}_H) \cdot N_1^l\} \cdot S_{\tau^+}$ Borrower's payoff:

$$\mathsf{Payoff} = (C_{\tau^+} - O_{\tau^+})$$

Borrowers only unfold the position if it generates positive cash flow

Payoff = $(C_{\tau^+} - O_{\tau^+})^+$ \leftarrow Call option payoff surfaces!

If $LTV_{\tau^-} < LTV_K$ (no liquidation) $Payoff(S_{\tau^+}) = (C_{\tau^+} - O_{\tau^+})^+$ $= N_0 \left(S_{\tau^+} - LTV_0 S_0 e^{(r+\kappa)\tau^+} \right)^+$ Factor out the number of coins as collateral N_0 If $LTV_{\tau^-} \geq LTV_K$ (one liquidation) Borrower remains loan position after one liquidation $Payoff(S_{\tau^+}) = (C_{\tau^+} - O_{\tau^+})^+$ $= N_1 \left(S_{\tau^+} - K_1 e^{(r+\kappa)\tau^+} \right)^+$ With new number of coins as collateral and strike where $N_1 = N_0 - N_1^l$ is number of coins remaining after liquidation, and $K_1 = K_0 \frac{LB}{2LB - LTV_{II}}$; Proof.

Observations:

Payoff looks like an call option with a constant multiplier with exponentially growing strike at rate $r + \kappa$ Borrower remains loan position after liquidation

Number of coins N_1 and strike K_1 after liquidation *do not* depend on liquidation time τ^- (if the price is continuous)

Chain up loans - Multi-period extension

Loan position remains a loan position after liquidation

- \Box Consider multiple liquidations in [0,T).
- The i^{th} liquidation is triggered at τ_i , where $\tau_1 < \tau_2 < \tau_3 < \ldots < T$.
- \Box At time *T*, the outstanding debt is

$$O_{T} = \left[\left\{ \begin{pmatrix} O_{0}e^{(r+\kappa)\tau_{1}} - N_{1}^{l}S_{\tau_{1}}\mathsf{LB} \end{pmatrix} e^{(r+\kappa)(\tau_{2}-\tau_{1})} - N_{2}^{l}S_{\tau_{2}}\mathsf{LB} \right\} e^{(r+\kappa)(\tau_{3}-\tau_{2})} - N_{3}^{l}S_{\tau_{3}}\mathsf{LB} \right] e^{(r+\kappa)(\tau_{4}-\tau_{3})} \dots O_{\tau_{2}^{-1}} O_{\tau_{$$

Rearrange and get,

$$O_{T} = O_{0}e^{(r+\kappa)T} - N_{1}^{l}S_{\tau_{1}} LBe^{(r+\kappa)(T-\tau_{1})} - N_{2}^{l}S_{\tau_{2}} LBe^{(r+\kappa)(T-\tau_{2})} - N_{3}^{l}S_{\tau_{3}} LBe^{(r+\kappa)(T-\tau_{3})} - \dots$$

The collateral value is

$$C_T = (N_0 - N_1^l - N_2^l - N_3^l \dots)S_T.$$

Crypto-Based P2P Lending

Chain up loans - Payoff

We write the payoff via indicator functions indicating how many liquidations are settled in [0,T)

$$\begin{split} (C_T - O_T)^+ &= N_0(S_T - K_0 e^{(r+\kappa)T})^+ 1(\tau_1 > T) & \text{No liquidation} \\ &+ N_1(S_T - K_1 e^{(r+\kappa)T})^+ 1(\tau_1 < T, \tau_2 > T) \text{ Exactly one liquidation} \\ &+ N_2(S_T - K_2 e^{(r+\kappa)T})^+ 1(\tau_2 < T, \tau_3 > T) \text{ Exactly two liquidations} \\ &+ \dots \end{split}$$

where
$$\tau_1 = \inf_{0 \le t \le T} \{t : \mathsf{LTV}_t \ge \mathsf{LTV}_H\}, \tau_i = \inf_{0 \le t \le T} \{t : \mathsf{LTV}_t \ge \mathsf{LTV}_H \text{ and } t > \tau_{i-1}\}, \text{ and } t > \tau_{i-1}\}, \mathbf{k} = \frac{N_0}{N_k} K_0 = \frac{N_0}{N_k} \cdot \mathsf{LTV}_0 S_0 \quad \forall k \in \mathbb{N} \text{ where } \frac{N_0}{N_k} = \left\{1 - \sum_{l=1}^k \left(\frac{\mathsf{LTV}_H}{2\mathsf{LB}}\right)^l\right\}^{-1}.$$

Chain up loans - Price discontinuity

Define an overshooting parameter

$$\xi_i \stackrel{\text{def}}{=} \frac{S_{\tau_i}}{H_i \cdot e^{(r+\kappa)\tau_i}}$$

Then

$$\begin{aligned} \tau_i &= \inf\left\{t: S_t \leq H_i \cdot e^{(r+\kappa)t} \text{ and } t \geq \tau_{i-1}\right\}\\ H_i &= \frac{H_1}{2^{i-1}} \prod_{j=1}^i \left(1 - \frac{\mathsf{LTV}_H/2}{\xi_i \cdot \mathsf{LB}}\right)^{-1} \end{aligned}$$

In addition

$$N_{i} = N_{0} \prod_{j=1}^{i} \left(1 - \frac{\text{LTV}_{H}/2}{\xi_{i} \cdot \text{LB}} \right)^{-1}$$
$$K_{i} = \frac{K_{0}}{2^{i}} \prod_{j=1}^{i} \left(1 - \frac{\text{LTV}_{H}/2}{\xi_{i} \cdot \text{LB}} \right)^{-1}$$

Proof: Two period model payoff

When LTV_t hits LTV_H from below, AAVE allows liquidators to liquidate Then the borrower's position by half of the *debt*, i.e. C_{τ^+}

$$O_{\tau^+} = \frac{O_{\tau^-}}{2}.$$

We define the number of coins to be liquidated as $N_1^l = N_0 - N_1$, so we also have

$$O_{\tau^+} = O_{\tau^-} - N_1^l S_{\tau^-} LB$$
. (LB = liquidation fee, discount)

Next, we write N_1^l in known terms,

$$\frac{O_{\tau^-}}{2} = N_1^l S_{\tau^-} LB$$

$$N_0 O_{\tau^-} = 2N_1^l N_0 S_{\tau^-} LB$$

$$N_0 O_{\tau^-} = 2N_1^l C_{\tau^-} LB$$

$$N_1^l = N_0 \frac{LTV_{\tau^-}}{2LB}$$

A useful expression (LTV_{τ^-} = LTV_H since price is continuous):

$$\frac{N_1}{N_0} = 1 - \frac{\mathrm{LTV}_H}{2\mathrm{LB}}$$

Therefore,

$$\begin{split} &-O_{\tau^{+}} = N_{1}S_{\tau^{+}} - \frac{O_{\tau^{-}}}{2}e^{(r+\kappa)(\tau^{+}-\tau^{-})} \\ &= N_{1}S_{\tau^{+}} - \frac{O_{0}e^{r\tau^{-}}}{2}e^{(r+\kappa)(\tau^{+}-\tau^{-})} \\ &= N_{1}S_{\tau^{+}} - \frac{C_{0}\text{LTV}_{0}e^{(r+\kappa)\tau^{+}}}{2} \\ &= N_{1}S_{\tau^{+}} - \frac{N_{0}S_{0}\text{LTV}_{0}e^{(r+\kappa)\tau^{+}}}{2} \\ &= N_{1}\left(S_{\tau^{+}} - \frac{N_{0}}{N_{1}}\frac{1}{2}K_{0}e^{(r+\kappa)\tau^{+}}\right) \\ &= N_{1}\left(S_{\tau^{+}} - \frac{\text{LB}}{2\text{LB} - \text{LTV}_{\tau^{-}}}K_{0}e^{(r+\kappa)\tau^{+}}\right) \end{split}$$

If liquidator liquidates the position exactly with the price that breach the liquidation threshold, i.e. $LTV_{\tau^-} = LTV_H$, we have

$$(C_{\tau^{+}} - O_{\tau^{+}})^{+} = N_{1} \left(S_{\tau^{+}} - \frac{\mathsf{LB}}{2\mathsf{LB} - \mathsf{LTV}_{H}} K_{0} e^{(r+\kappa)\tau^{+}} \right)^{+}$$

